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The continuity of the dependence of the non-singular solution on small perturbations of the dimensions and form of the shell 
is proved using methods described earlier [1]. These perturbations lead to a change in the region into which the middle surface 
of the shell is mapped (for example, an increase or decrease in the aperture angle of a shallow spherical cupola). The continuity 
of the dependence on small changes in parts of the boundary along which some form of boundary conditions is realized (for 
example, there is some part of the boundary rigidly damped with respect to the displacement of points in the direction of normal 
to the middle surface) is also proved. © 1998 Elsevier Science Ltd. All rights reserved. 

The continuity of the dependence of non-singular solutions on small changes in the elastic characteristics 
of a shell and on small perturbations of the form of the shell, which do not give rise to any changes in 
the region in which the coordinates of the middle surface and parts of the boundaries with different 
types of boundary conditions are specified, was proved earlier [1]. 

We will consider the general boundary-value problem of the non-linear theory of elastic shells of 
average curvature within the framework of the Kirchhoff-Love hypothesis. It is assumed that the shell 
has a fairly smooth middle surface S, mapped into a connected bounded open set f2 with a piecewise- 
smooth boundary/gfl in the plane R 2. The curvilinear coordinates on the middle surface ~ = (~1, ~2) 
f2 define the vectors of the fundamental basis aa = ~r/a~ a, where r = r(~ 1, ~2) is the equation of the 
non-deformed middle surface of the shell. Together with the vector of the normal n = a3 = a 3 to the 
middle surface of the vector of the main basis they form a three-dimensional basis which varies along 
S. The mutual basis a a is defined by the relations a~.a~ = ~ ,  where ~ is the Kronecker delta. Below 
we will use the rule for summation over repeated subscripts and superscripts. 

In the theory of shallow shells the "mean" bending deformations are described by two tensors, the 
strain tensor of the middle surface "t = )'~aaaa ~ and the tensor of the change in the curvature of the 
middle surface p = p~13aaa I~, the components of which have the form 

P,,o = ½(%1  = ½ ( u  = 

Here bal3 = b13= = -aa.a313 are the coefficients of the second quadratic form of the middle surface, the 
subscript 13 after the comma denotes a partial derivative with respect to ~13, while F=xl3 are the Christoffel 
symbols. In addition, we will introduce the following notation, written for the coordinates of the 
displacement vector u = uill i = uiai ( w  ~ u 3 ~-- u3) 

u l - = 4 + 

In the case when a quantity is in terms of the displacement vector u, expressed in terms of the vector 
v = oiai,  rather than this is denoted by the notation in brackets. For example, tpa(v) = t~3, ~. The relations 
of the theory of shallow shells can be found in [1, 2]. 

As a consequence of the linear distribution of the displacements over the thickness of the shell, the 
stress tensor can be split into two components, one of which represents the longitudinal forces in the 
shell n = nal3a~a 13, while the other represents the moments m = ma~a~a 13. The equations of equilibrium 
of the shell, written using the virtual work principle, have the form 
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(n°~5'Y~ + m~Sp~)d~- ~ (F~Su~ + FZSu~ + F~Sw)d~- 

I(f35w+M*aSwlan)ds=O, d~=Jd~td~ 2, j2 -at~2~Co>0 
_ _ - -  al Ia22 (1) 

where aap= al~ a = aa-ap are the coefficients of the first quadratic form of the middle surface, p is 
the density of the material, h is the shell thickness and F' are the external surface forces. The 
coordinates of the vector of virtual displacements ~ui are related to the variations in the strain tensors 
as follows: 

By,,# = ½ (Su,i a + 8uaa ) - b~Sw + y~ Opa8~= + ~p~,Sq~p ) 

8 p ~  = Y 2 ( 8 ~  + 8~1~), 8cp,~ = 8w,,~ + b~Su ~" = 8w.,~ + b~Sux 

whereas the strain tensors are related to the stress tensors and the moments as follows: 

n o = hciJta'~t a, m ij = h3ci'i~tpl a 112 

where c/j~ is the elasticity constants tensor of the material, which possess the properties of symmetry 
and positive definiteness. 

Using standard methods of the variational calculus we can obtain from Eq. (1) the differential 
equations of equilibrium 

n ~  + F " = O ,  r ~ - b ~ n ~ - ( u ~ n ~ ) l p - F 3 = O ,  tz=l ,2  

and the natural boundary conditions, which can be found in [1, 2] in a different notation. 
For simplicity we will consider the following version of the boundary conditions 

.,I,.==o, aw/ nlr,=O (2) 

where F 1 is a certain part of the boundary contour F. On the remaining part of the boundary we will 
use the natural boundary conditions. 

We will introduce the following scalar product on the set C of vector function u(g), 5n(~) ~ C(2)(f~), 
which satisfy boundary conditions (2), 

The closure of the set C of vector functions in the appropriate norm II u IIn = (u, u)~ 2 is the energy 
space H. 

Lemma 1. The components of the vector n e H are the elements of the spaces respectively: ul, u 1, 
u2, u 2 E W2(1)(f~), u3 = u 3 = w ~ W2(2)(t2); moreover, the corresponding norms of the spaces H and 
W20)(Q)- x W20)(f2) x W2(2)(f2) are equivalent. 

Definition 1. The vector function u e H, which satisfies Eq. (1) for any 5n ~ H, is called the generalized 
solution of the problem of the equilibrium of a shallow elastic shell. 

In order for Lhis definition to be well-posed, it is necessary to impose additional conditions on the 
components of the vectors of the external forces. Namely, we will assume that the vectors of the external 
forces are such that the functional of the work of the external forces, which is linear in 8u 

~(Fl~ul + F28u2 + F38w) d ~ +  ~ ( f38w+ M'aSwlan)ds  
t2 

will be a continuous linear functional in H with respect to 3u. Bly Sobolev's imbedding theorems [4], 
the following conditions are  the sufficient conditions for this: F ,  F 2 ~ LP(~), M* ~ LP(O~), for any 
finitep > 1, F ° = F~ + F~l,f ° = f~ + f(, F0* E L(D, while F~ and f ]  are certain finite linear combinations 
of 6-functions. 
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With this condition, using Riesz's theorem on the representation of a continuous linear functional 
in Hilbert space, we can represent the functional of the work of the external forces in the form of the 
scalar product 

S(FISul + F26u2 + Fa~w)d£2+ ~ ( f38w+ g * ~ w l a n ) d s  = (g, Su)~t (3) 
f l  all 

Following the well known procedure [1, 3], we will change from the integro-differential equation (1) 
to an operator equation in the energy space H. To do this we separate the term (u, 5u)H on the left- 
hand side of Eq. (1). It has been shown [1, 3] that the remaining terms on the left-hand side, for fixed 
u e H, give a continuous linear functional in the variable 6u ~ H, and hence, by Riesz's theorem on 
the representation of a continuous linear functional, their algebraic sum can be represented in the form 
of the scalar product (G, 8u)n. The element G is defined uniquely by the element u and the external 
loads. Since the external loads are fixed, the element G can be regarded as the value of a certain non- 
linear operator at the point u, which will be denoted by G = G(u). In this notation, Eq. (1) can be 
represented in the form (u, 8U)H = (G(u), 8U)H or, which is the same thing 

u = G(u) (4) 

It has been shown [1], that Eq. (4), with the above conditions imposed on the shell geometry and 
the external loads, has a solution and, consequently, the problem considered also has a generalized 
solution in the above sense. 

We will later need the notion of a non-singular solution of the problem. The solution u of Eq. (1) is 
said to be singular if at the given point u the Frechet derivative of the operator u - G(u) vanishes. The 
equation which governs the equality of a Frechet derivative at the point u to zero, if u is a singular 
solution, must have a non-trivial solution. A detailed investigation of this equation can be found in [1]. 

If a non-trivial solution of this equation does not exist, the corresponding solution u of Eq. (1) is 
said to be non-singular. At such non-singular points the Frechet derivative of the 'operator u - G(u), 
being a continuous linear operator with specific properties, has a continuous inverse operator. 

We will assume that there are two shallow shells (generally speaking, described by different equations), 
which occupy in plan the "close" regions f2' and f~". All the quantities relating to the first shell will be 
denoted by a single prime, while for the second shell they will be denoted by a double prime. Hence, 
for example, part of the boundary conditions (2) takes the form 

wit; = 0, aw / anlr; = 0, Wire,= O, aw/  anita,= 0 

We will further assume that there is a one-to-one smooth mapping of the region ~"  into fY, such 
that F~' is mapped one-to-one onto F[. After appropriate replacement of the coordinates of the middle 
surface of the second shell we obtain that both shells are specified in the same coordinate region 
f2 = ~'. 

We will assume that the above mapping of the middle surface ~"  onto the middle surface f2' = ~q 
is close to identical, so that after appropriate replacement of the variables in all the expressions and 
functionals for the second shell we obtain that the changes in the geometrical, elastic and force 
parameters are relatively small quantities. Differences between corresponding quantities will be denoted 
by the additional symbol A. 

Thus, we introduce the following quantities 

Ar(~J,~2)=r"(~l,~2)-r '(~l,~2), Ah = h " - h ' ,  Acijkl =c'*ijkl --cHjkl 

AaiJ = a"iJ - a'iJ, Abq = b"iJ - b "`j, 

~ J = J " - J ' ,  Ag = g " -  Axg' 

The element g is defined by (3) while the operator A~ is introduced by the equality [1] (A~u, X)w = (u, 
X)H". Here we have used the notation H' and H" respectively for the energy spaces for each of the shells. 

It is obvious that the shell S' has no particular advantages over the shell S". Hence, all the equations 
and relations should also refer to the shell S". To do this it is necessary to introduce the operator 
B~: (B~u, X)H" = (u, X)n'- 

The following assertion was proved in [1]. 

Lemma 2. Suppose that, for sufficiently small e > 0 
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II ac,2,,o,- , (5) 

A certain constant m > 0 then exists such that 

As previously [1], we will further investigate how the values of the operator of the problem depend 
on the variation of the problem parameters. Since formally, after changing to the new system of 
coordinates for the second shell, we obtain a problem in the same region and with the same type of 
boundary conditions and, consequently, we formally have the same problem of well-posedness as in 
[1], we can immediately formulate the final result. 

Theorem 1. Suppose that for the shell S' there is a non-singular generalized solution of the problem 
of equilibrium under a load g', described by a functional of the work of the external forces. 
Suppose further that there is a shell S" under a load g", and that condition (5) is satisfied and, in addition, 
II Ag IL,, ~< ~. In this case, for sufficiently small e, a generalized non-singular solution of the problem 
of the equilibrium of the shell S" exists in the form u' + Au, and II txu liar ~< 8(8), where 8(e) ~ 0 if 

---> 0. Further, in a sphere of radius 8(e) with center u, there is exactly one generalized solution of the 
equilibrium problem for each of the shells. 

The proof of the theorem is completely similar to the proof of Theorem 31.3 in [1]; the basis of the 
proof is the structure of the operator G(u) mentioned in [1]. 

Note that, as a rule, the singular solutions of the problems are isolated. It does not follow from 
Theorem 1 that, from the existence of a singular solution for one of the shells, a singular solution exists 
for the other shell, but it follows that, when a singular solution exists for the second shell, it necessarily 
lies in a certain small neighbourhood of the first singular solution. 

Above we considered the case when only one part of the boundary F1 is perturbed. If there are several 
such parts of the boundary, then, for the most part, it is impossible to map the region f~" into f2' so 
that all the corresponding parts of the boundary are mapped one into the other. In this case it is necessary 
to consider a sequence of boundary-value problems, each of which differs from the previous type of 
boundary conditions are specified. Then, by arguing for each of the corresponding pairs of problems 
in this chain, we obtain that a theorem of the type of Theorem I also holds in this case. 

The problem of the well-posedness of the problem when a highly elastic support is specified on the 
boundary of the region was considered in detail in [1]. If, for two shells, the form of the elastically 
supported contour is slightly displaced or one of them differs slightly from the other, all the above 
discussion can easily be transferred to this case also. 

Finally, we note that strict boundary conditions with respect to the tangential components of the 
displacement vector are determined solely by the theorem of solvability, proved in [1], and not by the 
technique for proving Theorem 1. Assuming the existence of a generalized non-singular isolated solution 
of the problem of the equilibrium of a shell with boundary conditions of any type, we obtain a theorem 
of the type of Theorem 1 by the above discussions in this case also. 

We will make one further observation. The continuity of the dependence of the non-singular solutions 
on a change in the form of the shell and the form of the boundaries and boundary conditions enables 
us to consider the problem of the convergence of the finite element method when the boundary of the 
region is not a polygon. 
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